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High-Voltage Electron Diffraction Measurement of the Debye Temperatures 
of Cr, a-Fe and their Disordered Alloys* 
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The critical-voltage effect of high-voltage electron diffraction has been used to measure the X-ray 
Debye temperatures of Cr, e-Fe and their disordered alloys. The 220 critical voltages were measured 
at room and elevated temperatures for the pure metals and at room temperature for five intermediate 
compositions. The data for the pure metals were sufficient to determine both the Debye temperature 
and the deviation from the free-atom value of the atomic scattering factor at the first-order reflection 
position. The results agree with those of other workers. The scattering factor deviations were assumed 
to be the same in the alloys as in the pure metals, and this made it possible to determine the alloy Debye 
temperatures from a single room-temperature measurement of the critical voltage at each intermediate 
composition. The Debye temperatures are analyzed successfully in terms of a simple one-parameter 
theory, and are correlated with the alloy melting-point data through Lindemann's formula. 

Introduction 

When the electron-diffraction pattern from a crystal 
several thousand angstr6ms in thickness is studied at 
electron accelerating voltages greater than about 100 
kV, one often finds a critical voltage at which the 
second-order Kikuchi line associated with a set of 
atomic planes vanishes, and above and below which 
the asymmetry of the excess-deficiency profile of the 
center line of the Kikuchi pattern is reversed (Watan- 
abe, Uyeda & Kogiso, 1968). The value of the critical 
voltage depends on values of the average atomic scat- 
tering factors at the reciprocal-lattice positions cor- 
responding to the set of atomic planes (the systematic 
reflections). The average atomic scattering factors for an 
alloy depend on the free-atom atomic scattering factors 
modified to take account of the following: (1) redistribu- 
tion of the outer electrons of the atoms in the crystal- 
line environment (this may modify the free-atom atomic 
scattering factor at low-order reflections; usually only 
the value at the first-order reflection is significantly 
modified), (2) composition and long-range order, and 
(3) mean-square static and thermal displacements of 
atoms from average lattice sites which cause a Debye- 
Waller type of attenuation of the scattering factors. 
To utilize the critical-voltage effect one must employ 
an appropriate model which characterizes all or some 
of the above effects by a few well chosen parameters. 
Some of these parameters may be fixed beforehand 
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(e.g. composition by chemical analysis, or long-range 
order by heat treatment), and others may be deter- 
mined from values of critical voltages. Just what crit- 
ical-voltage measurements are needed (e.g. for differ- 
ent systematics, at various temperatures and/or com- 
positions) depends on which parameters are regarded 
as undetermined. For a review of the applications of 
the critical voltage effect, see Lally, Humphreys, Meth- 
erell & Fisher (1972). 

The information which critical-voltage measure- 
ments give is essentially the same as can be obtained 
from X-ray diffraction measurement of Bragg inten- 
sities. However, the electron-diffraction method has 
the advantage of probing microscopic volumes 1 /~m 
or less in diameter and several tenths of a micron in 
thickness. It is also possible to use the direct imaging 
facility to examine the microstructure of the region. 
This makes specimen preparation much less critical 
than for a comparable X-ray study. 

The present paper reports measurements of the 220 
critical voltages of Cr and ~-Fe (both b.c.c.) at room 
and elevated temperatures, and of five intermediate 
alloys at room temperature. The data for the pure 
metals is sufficient to determine the X-ray Debye tem- 
peratures, 0M, and the values of the atomic scattering 
factors at the first-order reflections. Because the atomic 
scattering factors for atoms in the alloys are assumed 
to be the same as for atoms in the pure metals, and 
because the static mean-square displacements due to 
the atomic radius disparity between Cr and Fe can 
be shown to be negligible in these alloys, it is possible 
to find the alloy Debye temperatures by a single room- 
temperature critical-voltage measurement at each in- 
termediate composition. 
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Experimental 

The alloys were prepared by melting together 99.99 % 
Fe and 99.99 % Cr in a vacuum furnace. After being 
rolled into thin sheets in the usual manner, the alloys 
were annealed at 1000°C for several hours and 
quenched. Compositions were determined to 0.1% by 
chemical analysis. Thin foils were obtained from the 
sheets by conventional electropolishing. 

The critical voltages were determined by observing 
the 220 Kikuchi line and the asymmetry of the middle 
line in selected-area diffraction patterns at various volt- 
ages. The experimental critical voltages and tempera- 
tures are given in Table 1. 

Table 1. Experimental compositions, temperatures, and 
critical voltages, and the room-temperature X-ray Debye 

temperatures deduced from them 

M o l e  frac-  T e m p e r a t u r e  Cri t ical  vo l t age  0M 
tion of Cr (K) (kV) (K) 

0"000 295 + 2 305 + 3 424 + 12 
0"000 568 + 5 254 + 3 - 
0"212 295 + 2 293 + 3 422 + 12 
0.325 295 + 2 285 + 3 418 __. 12 
0"478 295 + 2 277 + 3 420+ 12 
0"763 295 + 2 271 + 3 459"5 + 12 
0"859 295 + 2 267 + 3 466 + 12 
1 "000 295 + 2 265 + 3 495 + 12 
1"000 658 + 5 215 + 3 - 

Analysis of data 

Assuming that each atomic site is statistically cubic, 
and that the mean-square displacement has a Gaussian 
distribution, the potential distribution of each atom 
is convoluted with a spherically symmetrical 'spread 
function' the half-width of which depends on the iden- 
tity of the atom. Thus, each atomic scattering factor 
is multiplied by a Gaussian of appropriate half-width, 
and the average atomic scattering factor is 

f=mafAexp(--MA)+mBfBexp(--MB), (1) 

where 
Ma=(kZ/6) (u2)a,  (2) 

and similarly for Mn. In these equations mA is the mole 
fraction of  A atoms, fA is the atomic scattering factor 
of an A atom in the crystal, (U2)z is the mean-square 
displacement of A atoms, and k=4rcs, where s =  
(sin 0)/2. It is useful to express (U2)A and (u2)8 in 
terms of correlation functions which have been studied 
elsewhere (Shirley, 1974a). Let aA=(1,0) for an (A,B) 
atom at site i. Then 

(U2)A = ~ o'AM2/ ~ 0"¢: (a ' 4uZ) /mz ,  
i i 

where the sums are over all lattice sites. Now express 
ai a (and aN in terms of a new variable at which has 
the value (2mn,--2mA) for an (A,B) atom at site i. 

This variable has the property ( a t ) = 0 .  Then one has 
0"[ t = m a + ½o" i and 

(u2)a=(uZ)+(2ma)-l(auZ) , (3a) 

and similarly 

(uZ)n=(uZ)-(2ms)-l(au2) . (3b) 

From equations (3), equation (1) may be written 

f = e x p  ( -  M) [mafA exp(-AMz)+mBfnexp (-AMB)] 

(4) 
where 

M=(kZ/6) (uZ), (5a) 

AMa=(k2112mA) (auZ), (5b) 

AM,=-(k2/12mn) @u2). (5c) 

In general (u 2) contains a temperature-independent 
part attributable to the static distortion of the lattice 
arising from the atomic-radius disparity between the 
two types of atoms, and it contains a temperature- 
dependent part attributable to thermal vibration [see, 
for example, Shirley (1974a)]. Coyle & Gale (1955) 
give a formula for the static mean-square displace- 
ment, which in simplified form is 

(u 2 )(static) = 0.36m A m B( a A -- an) 2 

where aA is the lattice parameter of the pure A metal. 
For Cr-Fe alloys the maximum value of (u 2) (static) 
is therefore about 4 x 10 -5 A 2. This compares with an 
error in (u 2) of + 7.5 x 10 -4 A 2 corresponding to the 
error of _+ 3 kV in the measured critical voltage. The 
only appreciable contribution to (u 2) is therefore from 
thermal vibrations and (u 2) may be represented by the 
well-known form (James, 1962) 

T~O(OM/T) 1 } 
(uZ) =436.64 [ - -  p ~  + ~ _  (A 2) (6) 

where p=mMaA+m~lza, and PA is the atomic weight 
of an A atom, T is the temperature of the crystal, and 
~0 is Debye's function. In a crystal for which the atomic- 
radius disparity is negligible, the analysis of Shirley 
(1974a) [specialize equation (24) of this reference by 
setting all terms with coefficient ), or yz (y is a measure 
of the order in atomic radius disparity) to zero, and 
set l=0]  shows that, in the classical regime, 

(Ju~)=IcT(J) Trace Go0, (7) 

where x is Boltzmann's constant, the subscript 0 refers 
to an arbitrary origin site, J is an arbitrary function 
of all of the a 's and where 

Go0 = v~ -1 i d3kg-l(k) 

in which 9(k) is the Fourier transform of the 3 × 3 
force-constant matrix appropriate to the average inter- 
atomic potential, and where the integration is over a 
Brillouin zone of volume Vk. If J =  1 in (7) we obtain 
the classical equivalent of (6), and if J=ao we find 
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@0u2)=0 because @0)=0.  Thus, if the atomic-radius 
disparity is negligible, then @u z) in equations (5) is 
negligible. Hence the appropriate model for the dis- 
ordered Cr-Fe alloys is one in which the average 
atomic scattering factor is given by 

f = e x p  ( -  M)f  (8) 

where f=mafA+mBfB, and where (u 2) is given by 
equation (6). 

The critical voltage occurs when branches 2 and 3 
[in the notation of Humphreys & Fisher (1971)] of the 
dispersion surfaces come into contact at a symmetry 
point (Nagata & Fukuhara, 1967; Metherell & Fisher, 
1969). The n-beam matrix diagonalization method of 
Fisher (1968) was employed in a computer program 
which locates the voltage for which dispersion surfaces 
2 and 3 coincide for a given f .  For the pure metals 
the scattering factors at all systematic reflections ex- 
cept the first-order were given free-atom values (Doyle 
& Turner, 1968). The first-order scattering factors were 
adjusted until (u 2) obtained from the critical-voltage 
program gave the same Debye temperature at both 
room and elevated temperatures when equation (6) 
was used. The Debye temperatures and scattering fac- 
tors obtained this way are given in Table 2, where they 
are seen to compare favorably with the results of in- 
dependent determinations. Two small corrections for 
thermal expansion causing a total change of 3 ° or so 
in OM were made. First, in order to evaluate the atomic 
scattering factors and the Debye-Waller factor at the 
correct positions in reciprocal space, the correct high- 
temperature lattice parameters were used in the critical- 
voltage computer program. Second, thermal expan- 
sion causes a weakening of the interatomic force con- 
stants so that (u 2) increases faster with temperature 
than it would in the absence of anharmonic effects. 
Multiplication by (1 +2flTAT) -1 of the value of ( M E >  

obtained from the critical-voltage computei" program 
corrects for this effect, fl is the coefficient of linear ex- 
pansion, ~, is the Grfineisen parameter, and AT is the 
difference between the high temperature and room 
temperature. As a consequence of this correction, the 
values obtained for OM are appropriate to room tem- 
perature. For the alloys, the first-order scattering fac- 
tors obtained for the pure metals were assumed, and 
the scattering factors at all higher-order reflections 

were given flee-atom values, f was computed using 
these atomic scattering factors, and the value of (u 2) 
deduced from the room-temperature critical voltage 
was used to deduce OM from equation (6). The results 
appear in the right-hand column of Table 1, and they 
are plotted in Fig. 1. 

The errors in the Debye temperatures are based on 
the errors in the observed critical voltages and tem- 
peratures, but not o11 possible errors in the scattering 
factors. Errors in f ( l l 0 )  could cause a further sys- 
tematic shift of all points together in Fig. 1 by as 
much as + 15 °K; however the good agreement of the 
pure-metal Debye temperatures with those of other 
workers (Table 2) seems to indicate that the systematic 
errors are considerably less than this. 

Interpretation of results 

Recently, Shirley (1974b) rederived the Debye tem- 
perature interpolation formula of M i t r a &  Chatto- 
padhyay (1972), expressing it differently and includ- 
ing the effect of short-range order. The formula is 

PO E = malzAO~ + mspBO~ 
+ ( z -  1) (1-cOmam.(paO2a+/zsO~) (9) 

I I i I i | J I 

5 0 0  - 

4 8 0  

4 6 0  

4 4 0  

4 0 0  ~ I I I i I I I 
0 0 . 2  0 . 4  0 .6  0 . 8  1.0 

M O L E  F R A C T I O N  OF C H R O M I U M  

Fig. 1. Variation of the Debye temperature of the Cr-Fe alloys 
with composition. The solid curve is the best fit of equation 
(9) to the data (r=0.72). The broken curve is the best fit of 
Lindemann's formula, equation (10) (x=0.197). 

Table 2. X-ray Debye temperatures and atomic scattering factors for Cr and Fe from the present study and from 
other work 

Cr Fe 
f(110) (present) 3.040 _+ 0.015 3.008 _ 0-015 
f(110) (other) 3"067 + 0.047 (1) 3.012 + 0.043 (2) 
f(ll0) (free-atom) 2.91 (3) 2.97 (3) 
0,u (present) 495 + 12 424 + 12 
0M (other: X-ray) 510 + 6 (4) 435 + 6 (4) 
0M (other: specific heat*) 505+ 6 (5) 431 (6) 

References (in parentheses after the data entries): (1) Fujimoto, Terasaki & Watanabe (1972). (2) Watanabe, Uyeda & Fukahata 
(1969). (3) Doyle & Tmner (1968). (4) Paakkari (1974). (5) Clusius & Franzosini (1962). (6) Kushwaha (1974). 

* The specific-heat Debye temperatures, 0o, were converted to 0M using the correction due to Zener & Bilinsky (1936). 
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where 0 is the alloy Debye temperature, 0A is the Debye 
temperature of the pure A metal, 0~ is the nearest- 
neighbor Cowley-Warren short-range order param- 
eter (Cowley, 1950), and where the deviation of 7: from 
unity is a measure of the factor by which the nearest- 
neighbor spring constant connecting dissimilar atoms 
differs from the arithmetic mean of the spring con- 
stants connecting similar atoms, i.e. gAB=7:(gAA+ 
g8~)/2, where gAA, etc. are the spring constants. It is 
theoretically anticipated, and experimentally con- 
firmed for several systems with small atomic-radius 
disparity, that 7: is composition-independent. Note also 
that equation (9) applies to either X-ray or specific 
heat Debye temperatures provided Poisson's ratio does 
not vary greatly with composition. This is usually the 
case. 

Equation (9) was fitted to the results by constrain- 
ing the formula to" give the pure-metal Debye tem- 
peratures exactly and then choosing 7: to give a least- 
squares best fit to the results at intermediate composi- 
tions, assuming a=0 .  The curve is given in Fig. 1, and 
it shows that the results are adequately described by 
a one-parameter model. The value of 7: is 0-72. 

It is enlightening to correlate the results obtained 
here with another physical property of the alloy sys- 
tem. Yamamoto & Doyama (1972) showed that Linde- 
mann's rule is valid for the ~ phase of certain alloys. 
For the special case of b.c.c, alloys Lindemann's for- 
mula (see Ziman, 1969) is written 

1 [ 1800Tm~ 1/2 
o . =  x ~ ..... ~ !  (lO) 

where Tm is the melting point, a is the lattice parameter 
in •, and x is dimensionless and constant at 0.2 to 
0.25 for most solids, x is the atomic r.m.s, amplitude 
at the melting point expressed as a fraction of the 
Wigner-Seitz radius. In using equation (10), Tm was 
the average of the liquidus and solidus temperatures, 
and the difference between X-ray and specific heat 
Debye temperatures was ignored. When the melting- 
point data in Hansen (1958) were used and x was 
chosen such that 0o from equation (10) fitted the data 
best in a least-squares sense, x=0.197 was found. This 
is in good agreement with what Yamamoto & Doyama 
(1972) found for the f.c.c, alloys they studied. The 

prediction of equation (10) for this value of x is plotted 
in Fig. 1, and good agreement is apparent. 
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